
Gladinet SDK Documentation

Introduction
Gladinet Cloud Desktop is designed with a 2-tiered architecture consisting of the core framework and

plugins for each cloud storage service provider. The framework is the heart of the system and provides

a common technology platform and a uniform look and feel for all storage services. It implements all the

core features like compression and chunking, task, backup and virtual directory management, while

managing the interface to the local desktop and operating system. It also presents the UI and is

responsible for driving the plugins to talk to their corresponding service provider. Each plugin simply has

to implement a common interface to their provider. This interface includes a few basic calls like

ListDirectory(), CreateDirectory(), RemoveDirectory(), Read() and Write(). Each of these calls will use the

methodology provided by their provider to manipulate data in the cloud. For example, some plugins will

communicate with the server using the REST API, while others may require a proprietary interface.

This 2-tiered model encapsulates the idiosyncrasies of communication with each provider within its

plugin while allowing the framework to focus on the common core of functionality.

The API
The API is designed to create a consistent interface between the service provider and the Gladinet

framework.

Synchronization

It is important to note that the framework does not assume that the work it requested is complete

when an api call returns. Instead, it is structured to request data from the plugin and then wait for an

asynchronous response. For example, a ListDirectory() operation is not completed when the api returns,

it is completed when the plugin calls m_Context.EndDirList(). Similarly, after CreateDirectory() returns

success, the framework will not consider the work completed until it is able to do a ListDirectory() and

see the created directory in the resulting listing. A plugin developer is therefore allowed the discretion

to implement the interface in a synchronous or asynchronous manner. The developer must also be

aware that depending on the responsiveness of the service provider, the framework may retry requests

before they are completed.

Path Translation

The framework maintains a mapping between the local virtual directories and their paths on the web.

For example, mounting an Azure account allows the creation of a virtual directory which might be

named Azure. This results in a folder name Azure being created under the users' Gladinet drive.

However, the file /Azure/Documents/foo.txt cannot be found unless an endpoint and account are

specified. Thus it would need to be translated to something like

http://accountinfo.blob.core.windows.net/Documents/foo.txt. This translation is managed in the plugin

factory. To facilitate this, the plugin developer will need to implement a routine like

GetCustomerDefinedPlugin() in the factory. This routine will take a Uri and translate it as outlined

above. To do so, it will leverage two framework methods, GetVirtualDirectory() and

GetSafeCardFieldValue(). For reference, consider the following code snippet:

 IVirtualDirectory VDir = m_VDirMgr.GetVirtualDirectory(VDirName);

 AccountName = VDir.GetSafeCardFieldValue(AccountNameId);

 PrimaryKey = VDir.GetSafeCardFieldValue(PrimaryKeyId);

In this snippet, AccountNameID and PrimaryKeyId are GUIDs which identify the appropriate entries in

customerdefined.gladinetsp where the account name and primary key are stored.

BeginRequest() and EndRequest()

Parameters: None

Returns: GladResult

Description:

Each new request creates a new instance of CustomerDefinedPlugIn. Once the instance has been

created, BeginRequest() is called. When the request is completed, EndRequest() will be called.

ListDirectory(string Uri)

Parameters: Uri contains the path for the directory to be listed.

Returns: GladResult

Description:

ListDirectory() translates the Uri from the Gladinet framework into one which is meaningful to the

service provider. Once the Uri has been transformed, ListDirectory() will send a request to the service

provider to return a directory listing. The response will be parsed and each directory will be added by

using m_Context.AddDirectoryItem(). Once all items have been added, m_Context.EndDirList() must be

called to let the framework know that the plugin has completed the listing. AddDirectoryItem also

allows you to pass any vendor specific data in a byte array.

CreateDirectory(string Uri)

Parameters: Uri contains the path of the directory to be created

Returns: GladResult

Description:

Translates the Uri, constructs and sends a create directory request for the service provider, parses the

response and sends the result to the framework. Note that even when a user creates a directory and

immediately renames it, Windows Explorer will create a directory with a name derived from "New

Folder" and then rename that directory. The framework does not have any inode equival ent so the

rename is implemented by calling Move() in the plugin. This routine must be implemented before the

create\rename pair will work. Finally, the framework will retry the CreateDirectory() call until

ListDirectory() on the parent shows the created directory. So, it makes sense to implement the list,

create and move calls together.

RemoveDirectory(string Uri)

Parameters: Uri contains the path of the directory which will be deleted

Returns: GladResult

Description:

Translates the Uri, constructs and sends a remove directory request to the service provider, parses the

response and sends the result to the framework.

DeleteFile(string Uri)

Parameters: Uri contains the path of the file which will be deleted

Returns: GladResult

Description:

Translates the Uri, constructs and sends a delete file request to the service provider, parses the

response and sends the result to the framework.

Move(string SrcUri, string DstUri, bool Overwrite)

Parameters: SrcUri and DstUri contain the paths of the source and destination objects. Overwrite

specified whether the destination object should be overwritten if it exists.

Returns: GladResult

Description:

Translates the source and destination Uris. Constructs and sends requests to create the destination

object, copy the source to the destination and delete the source if the copy succeeded. If the destination

already existed it will not be overwritten unless the Overwrite flag is set to true.

OpenFileForRead(string Uri, UInt32 Offset , UInt32 Length)

Parameters: Uri contains the path of the file to be read. Offset specifies the location to begin reading

from and Length how much data will be read

Returns: GladResult

Description:

Prepares the plugin and framework for a read sequence and requests a read from the provider. The

framework supports partial reads and writes, so this routine let's the framework know whether the

plugin can handle that. This is done by returning either GladResult.PartialContent, GladResult.Success,

GladResult.Fail, or GladResult.NotEnoughData. PartialContent means that the framework's request was

smaller than the file size and partial content is supported. Success means that we can read but do not

support partial content. NotEnoughData means that the requested data length exceeds the file size and

Fail means that we are unable to open the file for reading.

Read()

Parameters: None

Returns: GladResult

Description:

The read routine passes data back to the framework using m_Context.OnReadData(). For example,

assuming that the response from the provider has been stored in a stream, the routine might behave as

implied by the following snippet:

 int count = stream.Read(buffer, 0, (int) m_Length);

 while (count > 0)

 {

 if (!m_Context.OnReadData(buffer, (uint)count).Succeeded)

 return GladResult.Fail;

 count = stream.Read(buffer, 0, 256);

 }

OpenFileForWrite(string Uri, bool Overwrite, UInt32 Offset , UInt32 Length)

Parameters: Uri contains the path of the file and Overwrite indicates whether the existing file should be

changed. Offset indicates where the write will start and Length indicates the size of the write.

Returns: GladResult

Description:

OpenFileForWrite() assures the framework that the plugin is prepared to start receiving write requests.

Because the framework will probably complete the write by sending small 8K chunks, it also let's the

plugin know how much data to expect and gives it a chance to setup, if needed.

Write(byte[] Data, uint DataSize)

Parameters: Data contains the list of bytes that are to be written and DataSize specifies the size of the

current write.

Returns: GladResult

Description:

Optionally buffers the data and then sends it to the provider. The framework usually sends data in 8K

chunks. It is up to the plugin developer to determine the optimal transfer size. If that happens to be

larger than 8K, each chunk can be buffered until the transfer size has been reached and then the

contents of the buffer can be uploaded to the service provider. The framework does not care whether

the data in each write request was actually written to the provider. Returning Success from the Write()

call simply means that the plugin is prepared to receive the next write request. It is the plugin's

responsibility to make sure that the data is successfully uploaded, and determine how the framework

will be notified of the completion. Further details are provided in the description of CloseWrite() that is

given below. If we are blocking the Write() until it is committed to the provider, then returning Success

after the last write is committed is sufficient. In this case, CloseWrite() will simply return Success. If we

write asynchronously , m_Context.OnOperationComplete() must be called once the last write has been

committed, to let the framework know that the write has been completed.

CloseWrite()

Parameters: None

Returns: GladResult

Description:

Used by the framework to let the plugin know that the framework has written all of its data. The plugin

is then required to either return GladResult.Success or GladResult.Pending. If the plugin returns

Pending, the framework will wait for a call to m_Context.OnOperationComplete() before it considers the

write to be complete. Alternatively, if the plugin is done when CloseWrite() is called , then Success can

be returned. If the writes have all been done synchronously, then CloseWrite() can always return

Success. If however, the Write() calls are allowed to return before the data is actually committed to the

provider, then the Pending return will let the framework know that there may be outstanding writes and

it should wait for the OnOperationComplete() call.

Getting Started
Gladinet has provided a plugin for the local file system as a reference implementation. The easiest way

to get started is with a copy of this implementation. First copy ..\GladPluginFileSys to ..\YourPluginName

The reference implementation contains the following files: GladinetLocalFileSysPlugin.cs,

GladinetLocalFileSysPluginFactory.cs, PluginModule.cs and localfilesys.gladinetsp. In turn, these contain

implementations of the interfaces which will create a new plugin, namely: IStoragePluginModule,

IStoragePluginRequestHandler, IStoragePluginInterfaceExt, IStoragePluginFactory

IStoragePluginModule

This is implemented in PluginModule.cs as shown below

namespace Gladinet.Plugin

{

 ...

 public

 IStoragePluginFactory

 GetStoragePluginFactory()

 {

 return new GladinetLocalFileSysPlugInFactory();

 }

 public

 string

 PluginFQDN {

 get

 {

 return "Gladinet.Plugins.Storage.GladinetLocalFileSysPlugIn";

 }

 }

 public

 string

 PluginDescription

 {

 get

 {

 return "Gladinet Local File System Plugin";

 }

 }

 }

}

Simply modify the member function and properties to return the appropriate data for your plugin. For

example, GetStoragePluginFactory() may end up looking like this:

 public

 IStoragePluginFactory

 GetStoragePluginFactory()

 {

 return new CustomerDefinedPlugInFactory();

 }

This brings us to our next interface implementation.

IStoragePluginFactory

The definition of CustomerDefinedPluginFactory () lives in this interface which can be found in

GladinetLocalFileSysPluginFactory.cs. Here are some excerpts from the implementation:

namespace Gladinet.Plugins.Storage

{

 class GladinetLocalFileSysPlugInFactory : IStoragePluginFactory

 {

 private IVirtualDirectoryMgr m_VDirMgr;

 public

 object

 CreateNewRequestHandler(IStorageSessionCtx Ctx)

 {

 return new GladinetLocalFileSysPlugIn(Ctx, this);

 }

 ...

 public

 string

 GetPhysicalPath(

 string uri

)

 {

 ...

 VDir = m_VDirMgr.GetVirtualDirectory(VDirName);

 Root = VDir.GetSafeCardFieldValue("{4A3C8DF8-D2E5-4b99-AF00-63D228FFF86A}");

 ...

 return PhysicalPath;

 }

 public

 string

 ProviderId

 {

 get

 {

 return "{A99CCB1F-6FBD-4fd8-AF9C-A897A24F37EF}";

 }

 }

 ...

 }

}

Three changes are needed here:

1. Change GladinetLocalFileSysPlugInFactory to CustomerDefinedPlugInFactory.

2. Modify the GUIDs which identify the path field and the provider id.

3. Modify CreateNewRequestHandler() as follows:

 public

 object

 CreateNewRequestHandler(IStorageSessionCtx Ctx)

 {

 return new CustomerDefinedPlugIn(Ctx, this);

 }

The GUIDS are found in the localfilesys.gladinetsp file which will be renamed to store some properties

for the plugin under construction. A tool like uuidgen will be needed to create new GUIDs for the plugin

under development. For reference, note the location of the GUIDs above in localfilesys.gladinetsp. Note

that the GUID returned by the ProviderId property is actually called NetPluginId in the.gladinetsp file

and that the SPID should be the same for all plugins.

IStoragePluginRequestHandler and IStoragePluginInterfaceExt

Now that the plugin framework has been defined, we are ready to implement the core interfaces which

will define how the Gladinet framework communicates with the service provider. This is simply a matter

of implementing the API described in the section above.

namespace Gladinet.Plugins.Storage

{

 class GladinetLocalFileSysPlugIn : IStoragePluginRequestHandler,IStoragePluginInterfaceExt

 {

 ...

 public

 GladinetLocalFileSysPlugIn(

 IStorageSessionCtx Context,

 GladinetLocalFileSysPlugInFactory Factory

)

 {

 m_Context = Context;

 m_Factory = Factory;

 }

 public

 GladResult

 BeginRequest(

)

 {

 }

 public

 GladResult

 EndRequest(

)

 {

 ...

 }

 public

 GladResult

 ListDirectory(

 string Uri

)

 {

 ...

 }

 public

 GladResult

 CreateDirectory(

 string Uri

)

 {

 ...

 }

 public

 GladResult

 RemoveDirectory(

 string Uri

)

 {

 ...

 }

 public

 GladResult

 DeleteFile(

 string Uri

)

 {

 ...

 }

 public

 GladResult

 Move(

 string SrcUri,

 string DstUri,

 bool Overwrite

)

 {

 ... }

 public

 GladResult

 OpenFileForWrite(

 string Uri,

 bool Overwrite,

 UInt32 Offset,

 UInt32 Length

)

 {

 ...

 }

 public

 GladResult

 Write(

 byte[] Data,

 uint DataSize

)

 {

 ...

 }

 public

 GladResult

 CloseWrite()

 {

 ...

 }

 public

 OpenReadResult

 OpenFileForRead(

 string Uri,

 UInt32 Offset,

 UInt32 Length

)

 {

 ...

 }

 public

 GladResult

 Read()

 {

 ...

 }

 ...

 }

}

Here GladinetLocalFileSysPlugin needs to be changed to CustomerDefinedPlugin and each of the calls

will need to be implemented. Note that m_Context allows data to be passed back to the framework. For

example, ListDirectory will call m_Context.AddDirectoryItem() to add each directory that the provider

returned.

IStorageSessionContext and m_Context
Throughout this document we have been leveraging this interface through the m_Context member of

our IStoragePluginInterfaceExt imlpementation. The interface definition looks like this:

 public interface IStorageSessionCtx

 {

 /*

 * Request

 */

 string

 GetRequestHdr(string name);

 /*

 * Response

 */

 bool

 AddDirectoryItem(

 GladNodeInfo FInfo,

 ulong Size,

 byte[] VendorData

);

 bool

 EndDirList();

 GladResult

 OnReadData(

 byte[] Data,

 UInt32 DataSize

);

 void

 OnOperationComplete(

 GladResult gResult,

 byte[] OperationResult

);

 ...

 }

This interface allows the plugin to communicate with the framework as follows:

AddDirectoryItem() and EndDirList()allow ListDirectory to define a directory listing. Each file or directory

is returned by calling AddDirectoryItem() and the framework is notified that the listing has been

completed by calling EndDirList().

OnReadData() is used by Read() to transfer data returned from the service provider to the framework.

OnOperationComplete() is used by Write() to notify the framework that the write has completed. This is

needed when CloseWrite() returns a pending status.

Finally, vendor data can be set for each directory item. It is an array of bytes which can contain

metadata for the file or directory. Alternatively, it can contain any vendor or file specific inf ormation

selected by the plugin developer.

Gladinet SP File Creation and Mounting
In order to register a plugin with Gladinet Cloud Desktop, an XML file must be created with the
extension .gladinetsp. For example, localfilesys.gladinetsp looks like this:
 <VirtualStorage>
 <DisplayName>.Net File System</DisplayName>
 <SPID>{E910767C-28D6-46ad-890B-FCE357D9952D}</SPID>
 <NetPluginId>{A99CCB1F-6FBD-4fd8-AF9C-A897A24F37EF}</NetPluginId>
 <PluginModuleLocation>
 file://D:/gladinet/src/GladinetPluginHost/GladPluginFileSys/bin/Debug/GladPluginFileSys.dll
 </PluginModuleLocation>
 <LocalHost>allowed</LocalHost>
 <StorageType>Generic</StorageType>
 <Icon>http://www.gladinet.com/r/cashbundle.gif</Icon>
 <PublishedBy>Gladinet Inc.</PublishedBy>
 <PublishedDate>06/23/2009</PublishedDate>
 <Description>A sample implementation of a storage plugin using the Gladinet Storage SDK</Description>
 <PublisherWeb>http://www.gladinet.com</PublisherWeb>
 <SignupURL>http://www.gladinet.com</SignupURL>
 <ConfigurationURL>http://www.gladinet.com</ConfigurationURL>
 <Capability>
 <AllowRootFile>True</AllowRootFile>
 <MaxAllowedFileSize>0</MaxAllowedFileSize>
 <AllowedFileExtension></AllowedFileExtension>
 <DisallowedFileExtension></DisallowedFileExtension>
 </Capability>
 <SafeCardTemplate>
 <Field>
 <Name>Root Path</Name>
 <Encrypted>False</Encrypted>
 <FieldId>{4A3C8DF8-D2E5-4b99-AF00-63D228FFF86A}</FieldId>
 </Field>
 </SafeCardTemplate>
 </VirtualStorage>

Once this file is created, a virtual directory for the plugin can be mounted by invoking the FTA for the file

type. When Gladinet Cloud Desktop is installed, this association is created with the Gladinet Virtual

Directory Manager executable (GVDirMgr.exe). Following are a few notes on the elements in the XML

file which are not self explananatory:

 SPID contains a GUID which should be the same for all plugins. Copy this GUID to your file.

 NetPluginID is unique for each plugin. Use uuidgen to create a new one.

 PluginModuleLocation is the installed location of the plugin

 Capability contains several sub elements: AllowRootFile indicates whether the provider allows

files to be added at the root level. Writes will fail and return an appropriate error if

MaxAllowedFileSize is exceeded. If set to 0, there is no maximum. Etc...

 SafeCardTemplate describes the fields needed to login. Examples of fields include usernames,

access tokens, etc... Each field is identified by a GUID which is used by the plugin factory as

described above.

The Gladinet Directory
Gladinet has created a directory to serve as a central storage location for all plugins. Plugins from thi s

directory will be made readily available to Gladinet Cloud Desktop users. The directory can be found at

http://www.gladinet.com/p/umdirectory.aspx

